TY - JOUR KW - Arabidopsis KW - Databases, Genetic KW - Genome, Plant KW - Genomics KW - Oryza sativa KW - Poaceae KW - Quantitative Trait Loci KW - Triticum KW - Zea mays AU - Pankaj Jaiswal AB - The rich collection of known genetic information and the recent completion of rice genome sequencing project provided the cereal plant researchers a useful tool to investigate the roles of genes and genomic organization that contribute to numerous agronomic traits. Gramene ( http://www.gramene.org ) is a unique database where users are allowed to query and explore the power of genomic colinearity and comparative genomics for genetic and genomic studies on plant genomes. Gramene presents a wholesome perspective by assimilating data from a broad range of publicly available data sources for cereals like rice, sorghum, maize, wild rice, wheat, oats, barley, and other agronomically important crop plants such as poplar and grape, and the model plant Arabidopsis. As part of the process, it preserves the original data, but also reanalyzes for integration into several knowledge domains of maps, markers, genes, proteins, pathways, phenotypes, including Quantitative Trait Loci (QTL) and genetic diversity/natural variation. This allows researchers to use this information resource to decipher the known and predicted interactions between the components of biological systems, and how these interactions regulate plant development. Using examples from rice, this article describes how the database can be helpful to researchers representing an array of knowledge domains ranging from plant biology, plant breeding, molecular biology, genomics, biochemistry, genetics, bioinformatics, and phylogenomics. BT - Methods in molecular biology (Clifton, N.J.) C1 - http://www.ncbi.nlm.nih.gov/pubmed/20931385?dopt=Abstract DA - 2011 J2 - Methods Mol. Biol. LA - eng N2 - The rich collection of known genetic information and the recent completion of rice genome sequencing project provided the cereal plant researchers a useful tool to investigate the roles of genes and genomic organization that contribute to numerous agronomic traits. Gramene ( http://www.gramene.org ) is a unique database where users are allowed to query and explore the power of genomic colinearity and comparative genomics for genetic and genomic studies on plant genomes. Gramene presents a wholesome perspective by assimilating data from a broad range of publicly available data sources for cereals like rice, sorghum, maize, wild rice, wheat, oats, barley, and other agronomically important crop plants such as poplar and grape, and the model plant Arabidopsis. As part of the process, it preserves the original data, but also reanalyzes for integration into several knowledge domains of maps, markers, genes, proteins, pathways, phenotypes, including Quantitative Trait Loci (QTL) and genetic diversity/natural variation. This allows researchers to use this information resource to decipher the known and predicted interactions between the components of biological systems, and how these interactions regulate plant development. Using examples from rice, this article describes how the database can be helpful to researchers representing an array of knowledge domains ranging from plant biology, plant breeding, molecular biology, genomics, biochemistry, genetics, bioinformatics, and phylogenomics. PY - 2011 SP - 247 EP - 75 T2 - Methods in molecular biology (Clifton, N.J.) TI - Gramene database: a hub for comparative plant genomics. VL - 678 SN - 1940-6029 ER -